Online Grocery Retailers Ride The AI Wave for Customer Acquisition

As Machine Learning has become more accessible, more retailers are leaning towards adopting it for customer acquisition. The same is also true about grocery retailers who are trying to strengthen their relationship with customers using AI and ML. AI uses personalization and other tools to provide better experiences to customers.

Hyper personalization: Long and never-ending product lists are fast getting replaced by personalized offers to entice customers into buying more. Online retailers are bidding to meet customer expectations in unique ways by making the customer experience better. Not only products but product recommendations need to be in tandem with the requirements of the customers, even before they know they want a particular product. AI steps in here by offering experiences customized to individual consumers rather than a discount or offer available to all. This is done on the basis of what products an individual is most likely to buy. It is a win-win as the customer gets gratification, the retailer strengthens the bond with customers, and also records an increase in sales.

ML for personalization: For online retail AI relies on ML algorithms trained with behavioral data to understand customer requirements in a better way. E-commerce players can use this data for personalized product recommendations to customers and present customers with a user-oriented shopping experience. This goes over and above just selling a product.

Diderot effect for AI in online retail: Have you noticed how online e-commerce stores gently nudge you towards a container to go with the new pasta packet you just bought or cooking oil spray to go with the potatoes you just purchased? This is what is referred to as the Diderot effect which is defined as follows – obtaining a new possession often creates a spiral of consumption which leads you to acquire more new things. It is basically an impulse buy on the part of the customer. Though this kind of selling is well-known to marketers in the physical retail space, in e-commerce, such behaviour can be brought about by personalization which is done by analyzing clicks and purchase history or searches of the users. These are then used to make not only relevant but near-apt products which are almost certainly bought by them.

Besides other tools for personalization towards the goal of customer acquisition include email marketing customized for each customer, welcome texts which are personalized, e-shop navigation according to customer visit history, chatbots etc.