7 Secret insights about Pet Parents

Pet Owners: Secret Insights of pet parents in India

Sherlock AI embarks on a cute mission this time. It identifies people who have pets in Mumbai & Pune and understands their consumer behavior. How does Sherlock AI even identify if someone has a pet, you ask? That’s the beauty of it. Sherlock AI can understand thousands of distinct and unique consumer signals from 40+ datasets. It is able to understand exactly what 350 million consumers are doing on a daily basis- right from where they live, what they spend on, what places they visit, their brand affinities, where they work and so much more!

In this particular case, to identify people with pets, Sherlock AI understands people visiting Pet related points of interest- pet shops, pet adoption centers, pet supplies stores, pet daycare, pet grooming centers, veterinarians, dog parks, etc. and understands where these people live, their consumer behavior patterns- where they visit, what do they spend on, etc. Let’s hear Sherlock AI say Woof! Wooof!!

Are people with pets more modern? Are people with pets more ‘chilled-out’? Are there particular region clusters where people with pets typically live? Pet owners

Let’s see what Sherlock AI has to say about this

  • Pet owners spend considerable time towards entertainment & hobbies and keeping themselves occupied! They seem to have higher amount of hobbies than typical consumers
  • They visit Electronics entertainment shops, soccer clubs, delis, bowling centers dance studios and other food related places
  • It’s interesting to also note that people with pets also are ‘chilled out’, modern based on their frequent visits to breweries, cigar & tobacco shops, gambling centers and other nightlife centric places
  • People with pets tend to take frequent road trips. This is clearly evident from the fact that most of them visit multiple toll booths and fueling stations
Let’s now try and understand where pet owners are clustered (in terms of where they live).
Ab pan-India films se pan-India pet stores! Mega blockbuster signature pet stores
On a first look, it seems extremely curious to note that there are some ‘signature’ pet related shops in Mumbai and Pune, where people visiting from other places such as Delhi, UP, Nagpur, buy supplies from these shops whenever they visit Mumbai or Pune!
On diving deeper, Sherlock AI finds some of these ‘signature’ pet shops, as distributed across Bandra West, Borivali, Kalyan, Thane in Mumbai and Pune city (near Shaniwar Peth), Katraj. Sherlock AI knows what exactly these ‘signature’ shops are, but that’s a story for another time.
People love their pets! DUH!
Would you believe that people on an average travel ~15-20 km to get their pet supplies, in Mumbai? Apart from a few South Mumbai localities  such as Byculla, Nariman Point and West Bandra where people have premium pet stores in their neighborhood, there seems to be a big gap in terms of the market for quality pet products and services!
Now Sherlock AI figures out where these consumers actually live. How does Sherlock AI do this? Since Sherlock AI is able to understand consumers’ lat-long (GPS coordinates) over durations of time (1 GPS ping every 5 mins), Sherlock AI is able to reconstruct the entire timeline of a consumer. Sherlock AI tags a consumer’s residential location if he/she has stayed in the same location (lat-long) from 12 am to 6 am, for at least 4 days a week.
Sherlock AI identifies that there are 5 major ‘Pet’ clusters in Mumbai. Two clusters in South Bombay, in Fort Area, Byculla & Malabar Hills and one major cluster near Malad & Kandivali and another major cluster in Thane West & Kalwa, and the last major cluster in the Kalyan-Dombivli region. 
Similarly, there is a big pet cluster in the Mangawadi-Bibwewadi-Dhankawadi region in Pune where there seems to be a maximum concentration of Pet owners!
mumbai clusterpune
Who’s a goodie AI? Who’s an amazing precision targeting platform? Well, you know the answer to this: Sherlock AI indeed! 🙂
Interested in learning more about how Sherlock AI works and how you can use such amazing consumer insights and the brilliant signals for your digital campaigns? Get in touch with us or check this article out!

Sherlock.ai: Servicing several industries and staying relevant – Retail, Luxury & The D2C Health & Wellness

Sherlock.ai: Servicing several industries and staying relevant – Retail, Luxury & The D2C Health & Wellness 


As consumers of luxury goods, we love shopping for Kate Spade, Louis Vuitton, Jimmy Choo, and other such bags at malls. What we may not notice is that the ad on our phone for the latest collection of Michael Kors was targeted at us on the basis of our last few purchases and visits to luxury goods stores.

This is done with the help of data from the Identifier for Advertising (IFA) cookie on our phone, which is picked up with metrics such as age, gender, or demographics as well as our behavioral data i.e., likes and dislikes or psychographics. It is also determined which location of the store we traveled to, how much time did we spend at the store, and if at all we made a purchase. Furthermore, it is also analyzed if we went to any competition stores along with more such data which is of immense use to the marketers.


Luxury Retail and precision targeting high-intent consumers

Luxury Retail brands also use visitation data, user behaviours, purchases, and digital footprints to reach out to buyers. The prosperity index and visitation data can tell who is looking to buy luxury goods and if they can afford the Villeroy & Boch tea set that the company wants to market. This can be done by identifying people who visit high-end urban locations such as DLF Emporio in Delhi to classify them as affluent. Visitation data can further help in choosing new store locations. Details such as how far are we traveling from our home locations to the store also help as they give out a lot about how much we, as customers, are willing to travel to buy our desired products.


Towards a healthier and fit world: Sherlock AI helps D2C, Health and Wellness companies in acquiring high-intent consumers

D2CThe D2C Health & Wellness industry is one of the industries using AI exponentially. As a fitness-conscious person, if we hit the gym often – say on certain days, or perhaps even all days of the week, and are health conscious (are spotted signing up for a one-off yoga session every now and then or try to fit in that pilates or air yoga class in our workout schedule), we may notice a sudden uptick in ads on our social media about protein shakes, naturally sweetened laddoos sans refined sugar, gluten-free crackers, ethically sourced food products, organic fruits and vegetables, milk alternatives, etc.

We may also become the TA for companies selling fitness equipment, labs doing complete blood profiles at attractive prices, and home pick-up of samples. All this comes our way upon being identified as the customer who is most likely to buy these products or services. With the help of AI and marketing, it has been established that hypochondriacs or people who constantly worry about getting very ill may be visiting pharmacies, clinics, and hospitals way too often. Such people can be identified as the TA for those who want to do frequent blood profiles to know that their body is functioning just fine.

Not only this, but we then also become the ideal consumers for protein shakes, calcium-boosting drinks for healthy bones, and so on. Philips Future Health Index India 2022 report has indicated that Telehealth and AI are top priorities for Indian healthcare leaders. The report is based on proprietary research from nearly 3,000 participants across 15 countries and looks at how healthcare leaders are using data and digital technology to address the challenges due to the pandemic.


So how are we picked and identified and targeted with these ads? Sherlock, for example, determines the kind of ailments people visit hospitals for. On a map of Mumbai, all the major hospitals and clinics were plotted. GDPR) compliant data from cellphone app data providers was used to look at the movement of people in and out of these hospitals. Sherlock was able to distinguish the hospital staff from patients or their kin based on the longevity and frequency at which they come to the hospital.

At Tata Memorial Hospital, for example, they could identify the number of people coming in for treatment of cancer. Furthermore, it was also determined how many people were simply visitors and not patients. Predictive Analytics can help in managing operations and administrative challenges faced by hospitals. The above data, for example, can, among others, be used in the early detection of the rise in Covid-led hospitalization (or other such phenomena) and can alert hospitals of the need for more staff in the coming days.

Hospitals can thus be alert and better prepared for what is coming their way – equipment supply and maintenance (like oxygen cylinders during Covid) can also be taken better care of. Read more about how Sherlock AI helped BMC with tracking COIVID 19

AI’s relevance across industries can thus not be undermined. It is time to buckle up and make the most of it.


 Interested in acquiring high-intent consumers? Schedule a call with us and see how Sherlock AI can magically improve your customer acquisition!

Case Study: How Sherlock AI helped Tata Motors acquire consumers and reduce CAC

Following up on our previous post, Tata Motors, a USD 4 billion leading global auto company and an Infinite Analytics client, in its diverse portfolio, includes an extensive range of cars, SUVs, trucks, buses, defense vehicles etc.  They saw a whopping 75% reduction in Customer acquisition cost (CAC) upon using Sherlock AI. The client started using Sherlock AI a tool developed by Infinite Analytics with the mandate of addressing a few issues and challenges which were:

The client started using Sherlock AI with the mandate of addressing a few issues and challenges which were:

  • To find out people who have visited their showrooms or that of their competitors (a challenge faced by most automobile manufacturers).

  • Looking for consumers who are currently looking to buy a vehicle, and also finding the different consumer signals which help identify the intention of purchasing the said vehicle.

  • They were also looking for dataset acquisition. An algorithmic setup to blend data layers is a computationally intensive task and needs specialized and seasoned data scientists to execute it successfully. 

How Sherlock AI rose to occasion and provided just the solutions that were needed 

We started by mapping the layout of all car showrooms and consumers visiting the dealerships were tracked as well. We then combined the mapping with IA’s proprietary analysis to help in understanding the locations where the ***device has shopped***, where the individual lives, and other metrics such as prosperity level (insert prosperity blog**), transactional data, automobile dealership visitation, search trends on digital platforms (Google, Car aggregators), etc. to create classifiers based on the person’s interest in purchasing a vehicle.

Tata Motors

After doing so, we ran precisely targeted campaigns to the people who were mostly to convert (as customers of Tata Motors) on Social media platforms such as Facebook, Instagram, and Google. These activities led to some amazing results for Tata Motors as they witnessed a whopping 75% reduction in Customer acquisition cost (CAC). 

 These kinds of results have been made possible as we at Infinite Analytics are First-party data independent, 100% GDPR & CCPA Compliant, and track the most comprehensive real and digital signals from 40+ datasets and 350 million consumers. 

Hear directly what Tata Motors has to say:

As a testimonial, Rajan Amba, VP, Sales & Marketing, Tata Motors PV, said, “Infinite Analytics has been a partner to Tata Motors, in the last one year. Their platform, Sherlock AI is helping us scale our network expansion, both in the passenger vehicle business. It also delivered what it promised – a reduction in CAC and a new perspective in customer acquisition that no one in the market provided. They are essential to our growth ambitions and we look forward to deepening our relationship with them.”

Want to explore how Sherlock AI can help your business? Write to us contactus@infiniteanalytics.com

 Subscribe to our newsletter for regular updates and interesting insights


How TATA Motors used AI to reduce CAC by 75%

Did you know, players in the Automotive sector can use AI for improvised sales by connecting sales to marketing data sets which were used earlier? AI can be deployed to automate lead-management and related activities, in predicting which products are very likely to be sold to customers for now and in future. It can also be applied for dynamic pricing in the sales process.

Tata Motors and Sherlock AI

Tata Motors

Tata Motors Limited, India’s second largest car manufacturer, was looking to lower the cost of acquiring a customer (CAC). By CAC, they meant CAC in actuals and not the Cost Per Lead. The company wanted to lower the cost of acquiring a customer who would be purchasing the vehicle in their showroom. To achieve their goals, they began using Infinite Analytics’ AI platform, Sherlock AI in 2021.

Since last year, we, at Infinite Analytics, started working with Tata Motors with the objective of reducing the CAC, as well as work with their PV, EV and CV categories, in order to play a role in making them the largest manufacturer in India. 

In the course of this work, at the end of the third month, the CAC reduced by  75%, and Tata Motors acquired the capability to expand their dealer/showroom network in places of a potential high demand/growth. Earlier, each location for network expansion took over 5-6 months. Using Sherlock, they were able to reduce it to a mere few weeks. They were thus able to expand the network exponentially, using the platform’s algorithms (which algorithms).

Complementing our work, usage of social media also helped vastly. The company gained a new perspective in customer acquisition that no one in the market provided. The insights were crucial for their growth plans, the results for which have already started to show.

When we go to buy an automobile we usually have certain brand preferences/loyalty and a budget in mind. For a long time, as Maruti or LML Vespa buyers, we never looked elsewhere. But, when we are leaning towards buying a car brand ‘A’, and it doesn’t fit in our budget, and we happen to get an advertisement on our Social Media platforms of a car brand ‘B’ whose dealership showroom is located near our home or office, and the prices are within our budget, we may actually end up visiting the showroom and buying that very car. This is not serendipity. This is targeted marketing with the help of AI.

Read this detailed case study on how Sherlock AI enabled Tata Motors to acquire customers and reduced CAC by 75%!


So how does an automobile showroom analyze the competition in the market, how does one know what vehicle are we, the customers looking to buy and in which segment, which competition showrooms are we visiting, and which are the places where showrooms or vehicle charging stations should be set up and more? Brand loyalty makes customers travel to faraway places to have a look/test drive at their preferred automobiles. Sherlock.ai comes into play by mapping the layout of all automobile showrooms.


Consumers visiting the dealerships are tracked as well. Our current vehicle or mode of transport is also determined. This data is then combined by mapping it with IA’s proprietary analysis to help in understanding the locations where we have shopped or what is called transactional data (using our digital footprints and use of debit/credit cards/wallets etc.), where we live, and other metrics such as prosperity level and thus the ability to spend, automobile dealership visitation, search trends on digital platforms (Google, Car aggregators), etc. to create classifiers based on our interest in purchasing a vehicle.

Precisely targeted campaigns are then launched on Social media platforms such as Facebook, Instagram, and Google for those of us who are most likely to convert.



Read more about how Sherlock AI helped Tata Motors here



Want to explore how Sherlock AI can help your business? Write to us contactus@infiniteanalytics.com

Subscribe to our newsletter for regular updates and interesting insights


How AI Has Helped Food Delivery Cos Reach Greater Heights

Food delivery companies all over the world are using AI to reach greater heights. The same is true about apps such as Zomato, Dunzo, Borzo etc in India. If you are in India and remember the Swiggy app of yore, you may also remember how it was just another option when other apps didn’t work or delivery partners were not available. Today, Swiggy boasts of an order volume that has grown over 200%. Applying AI to its workings, the company generates terabytes of data week after week. 

Food DeliveryThe delights of using the app today are such that it has converted dedicated users of rival apps to being their own loyal customers. How did they do it? In their own words, this was achieved by real-time, micro-optimization of dynamic demand-supply, over and over many times during the day. With this they were able to provide the urban consumers with hitherto unexperienced levels of convenience.  

With the recent hit of the pandemic, more and more people have begun to realise that ordering food online is much more easy and convenient than going to a restaurant. This has opened up a wide range of opportunities for restaurants to go digital and reach a wider range of customers. This seem to be accelerated by COVID, with a big wave of people starting to ‘order-in’

The How

Swiggy achieved its goals by creating a three-way hyper-local marketplace wherein the company matched the demands of the consumers with supply from vendors i.e. restaurants, cafes, and stores as well as deliver executives (mostly people looking for quick money and side jobs). They used AI across this marketplace to deliver a delightfully seamless customer experience to achieve unparalleled growth and also drive operational efficiency. Infact, they are now so dependent on AI for their growth that they consider it impossible to go back to the time wherein they relied just on human intelligence to achieve their goals.

Behaviour of the consumer

Collection of consumer data helps Swiggy get hold of the behavioral aspect of things. By knowing their customer’s behaviour through this data they can deliver personalized experiences. This is achieved using Catalog Intelligence with which ML models help enrich the Swiggy catalog with meta-data. For example Classifying foods on offer as vegetarian, egg, or non-vegetarian and even categorizing similar products under sections for example: salads, soups, main course, rice, breads, and dessert. 

Use of Customer Intelligence helps the company in customer segmentation on the basis of their affordability (derived using their past buying behaviour) and also log customer churn i.e. when a customer stopped using the app or service. Customized and relevant content is shown to the customers  using catalog intelligence and customer intelligence. You may notice the app showing you your previous order and prompting you to re-order the same. 

This happens as the app may have noticed you ordering the same food from a particular place again and again. This even includes showing you restaurants nearby you depending on your current location and not your usual home or office location. Their Live Order Tracking feature is one of the most popular features among customers. They even get to know of delays and when the delivery partner is at their doorstep.

Want to use Sherlock AI in acquiring higher intent consumers? Drive up app installs, app engagements and user acquisition using Sherlock AI. See how it works here

Vendor X Food Delivery

To tap in the right vendors Swiggy uses AI for time-series based demand prediction models which help the restaurants plan ahead to meet the demand of the customers. The Company also uses ML to cut financial losses by identifying and preventing abuse.

With such advanced uses that are being improvised upon as you read this blog, the food delivery landscape is bound to change even more in the times to come.

Want to explore how Sherlock AI can help your business? Write to us contactus@infiniteanalytics.com

Subscribe to our newsletter for regular updates and interesting insights

Online Grocery Retailers Ride The AI Wave for Customer Acquisition

As Machine Learning has become more accessible, more retailers are leaning towards adopting it for customer acquisition. The same is also true about online grocery retailers who are trying to strengthen their relationship with customers using AI and ML. AI uses personalization and other tools to provide better experiences to customers.

How are online grocery retailers leveraging AI?

Hyper personalization: Long and never-ending product lists are fast getting replaced by personalized offers to entice customers into buying more. Online retailers are bidding to meet customer expectations in unique ways by making the customer experience better. Not only products but product recommendations need to be in tandem with the requirements of the customers, even before they know they want a particular product. 

AI steps in here by offering experiences customized to individual consumers rather than a discount or offer available to all. This is done on the basis of what products an individual is most likely to buy. It is a win-win as the customer gets gratification, the retailer strengthens the bond with customers, and also records an increase in sales.

ML for personalization: For online retail AI relies on ML algorithms trained with behavioral data to understand customer requirements in a better way. E-commerce players can use this data for personalized product recommendations to customers and present customers with a user-oriented shopping experience. This goes over and above just selling a product.

Diderot effect for AI in online retail: Have you noticed how online e-commerce stores gently nudge you towards a container to go with the new pasta packet you just bought or cooking oil spray to go with the potatoes you just purchased? This is what is referred to as the Diderot effect which is defined as follows – obtaining a new possession often creates a spiral of consumption which leads you to acquire more new things. It is basically an impulse buy on the part of the customer. 

Though this kind of selling is well-known to marketers in the physical retail space, in e-commerce, such behaviour can be brought about by personalization which is done by analyzing clicks and purchase history or searches of the users. These are then used to make not only relevant but near-apt products which are almost certainly bought by them.

Online Grocery

Besides other tools for personalization towards the goal of customer acquisition include email marketing customized for each customer, welcome texts which are personalized, e-shop navigation according to customer visit history, chatbots etc. Based on the recent survey carried out by Information Resources Inc., more than 52% of online shoppers normally select their favorite grocery store considering the store that offers quality item at lowest prices. 

Nevertheless, based on the prevalence of stores like whole food stores and others, it is quite obvious that people are usually ready to spend little more extra when they are paying for not just food but impressive shopping experience. Majorities of online shoppers usually move to the store that is not just providing them not just with what they need in the store but also make them feel belonging. 

Also, doing all you can to make the customers feel personal relationship which will make grocery shopping an easy and simple thing to do at any point in time. Customers will not see shopping as a chore anymore when you offer them an iPhone or Android shopping app that will make it easy for them to get your ads, coupons, and everything they need, just with a tap on their Smartphone and website. 

Take advantage of easy Grocery Store Customer Acquisition, Loyalty and Retention through data-digital marketing- Use Sherlock AI!  See how Sherlock AI identifies high-intent target audiences

Want to explore how Sherlock AI can help your business? Write to us contactus@infiniteanalytics.com

Subscribe to our newsletter for regular updates and interesting insights



Why Hoteliers and Travel Entrepreneurs Must Automate Dynamic Pricing

Dynamic PricingHoteliers typically resort to dynamic pricing (changing the price of rooms as per changing market conditions) twice or thrice a year. Hilton has been practising dynamic pricing since as far back as 2004. This was perhaps done manually. But with the advent of machine learning applications in the game, dynamic pricing uses predictive analytics to add variables (upcoming holidays, lifting of Covid-led lockdowns, mid-week strikes leading to office holidays etc.) in forecasting the best price. See what all different parameters Sherlock AI can help you in creating dynamic pricing and also with customer acquisition.

Dynamic Pricing and Hotels:

In the hotel industry, these pricing refers to the continual, real-time tweaking of room prices based on algorithms. These algorithms take into account the fluctuations in data of consumer demands, competitor pricing, seasonality, current occupancy, and other external factors to increase hotel revenue.

While such strategies have been a common practice in the travel and tourism business, it is now gaining momentum in the hotel industry for automating revenue management. When hoteliers switch to hotel revenue management software, dynamic pricing keeps a regular check on the market demand and supply of rooms and accordingly changes the pricing strategy in real-time to increase conversion rates overnight. 

Dynamic pricing strategies employ artificial intelligence to monitor every aspect including different segments of your target audience, their booking patterns, the length of their stay, their preferences in terms of rooms and amenities, and the segments of your hotel that attract maximum guests while keeping a constant watch on your competitor’s pricing structure. Dynamic pricing efficiently adapts your average room rates as per the changing preferences of customers, special occasions and seasonal peaks to attract maximum bookings and increase occupancy. With static room prices, hotels sell rooms at the same rates year round, and their revenue solely depends on the number of rooms occupied. This significantly increases the pressure to increase conversion rates during offseason.

Case in point is a predictive analytics tool developed by Starwood Hotels in 2015 which took into account a plethora of factors to arrive at the best price for a point in time. These variables ranged from weather conditions, competitive pricing data, occupancy data, booking patterns of users, and many other variables. This system can either be fully automated or help from human operators can be taken to adjust rates manually if required. When hotels get hold of the customer data as well as market data, they can get direct bookings and earn more profits than they would with third parties (such as booking portals) involved.

Among the first to adopt a non-static pricing, Hilton did it when access to technology was far less as it stands today. By using the correct revenue management software, the hotel made the shift to dynamic pricing in an absolute manner and also offered it as part of its loyalty program. The end product is flexibility, cost savings, and good revenue gains.

Matildas, a boutique hotel in Chile too is using a revenue management system with a price intelligence engine. They got better prices, more revenue, and savings on labour costs as a result of this implementation.

Hotelmize uses AI for their Room Mapping to track dynamic prices for a given room across multiple suppliers. Enter the gamechanger AI which will predict dynamic prices for a particular room, and they can now accurately know the approximate duration for which the price will remain lowest.

Flight fare forecasting: New mobile apps are helping customers find cheaper flights which they find using price forecasting applications. Bagging the best deal on flights and hotels has become that easy nowadays. Being automated, these tools scan the market and alert the users when the best deals are available. Websites such as Skyscanner and Hopper provide such services by helping customers to book cheap flights with the help of analytics. When travel agency websites add similar tools they can take a quantum leap in customer acquisition, making them book more trips, and rake in much needed revenue.